
Haskell for Readers
Joachim Breitner∗, DFINITY Foundation†

Solution 1

Both operators are left-associative, so that 10 - 2 + 3 - 4 means ((10 - 2) + 3) - 4 as expected.

Solution 2

The precedences of (+) and (-) are the same, and smaller than the precedence of (*), which is again
smaller than the precedence of (^).

Solution 3

7

Solution 4

3

Solution 6

absoluteValue x = if x < 0 then - x else x

Solution 7

isHalfRound x = x `mod` 10 == 0 || x `mod` 10 == 5

Solution 8

isEven x = x `mod` 10 == 0 || x `mod` 10 == 2 || x `mod` 10 == 4 || x `mod` 10 == 6 || x `mod` 10 == 8

Solution 9

sumDigits n = if n < 10 then n else sumDigits (n `div` 10) + (n `mod` 10)

Solution 10

fixEq f x = if x == f x then x else fixEq f (f x)

Solution 11

isMultipleOf3 x = fixEq sumDigits x == 3 || fixEq sumDigits x == 6 || fixEq sumDigits x == 9

Solution 12

The definitions for countCountDigits and sumSumDigits:

Prelude> countCountDigits = twice countCountDigits

Prelude> sumSumDigits = twice sumDigits

∗http://www.joachim-breitner.de/
†https://dfinity.org/

1

http://www.joachim-breitner.de/
https://dfinity.org/

Solution 13

id :: a -> a

Solution 14

It is the function flip that takes a function and swaps its first two arguments.

Solution 15

This type is legal. Every value of type Wat is built from the constructor Wat, applied to another value of
type Wat. So, unless there are exceptions or nontermination around, it is just an infinite tower of Wats:

wat :: Wat

wat = Wat wat

Solution 16

There are four: Nothing, Just Nothing, Just (Just False) and Just (Just True). It can be useful if, for
example, the outer Maybe indicates whether some input was valid, whereas Just Nothing could indicate
that the input was valid, but empty. But arguably this is not best practice, and dedicated data types with
more descriptive names could be preferred here.

Solution 17

Maybe (Integer, Integer)

Solution 18

fromEitherUnit :: Either () a -> Maybe a

fromEitherUnit (Left ()) = Nothing

fromEitherUnit (Right x) = Just x

toEitherUnit :: Maybe a -> Either () a

toEitherUnit Nothing = Left ()

toEitherUnit (Just x) = Right x

We can make fromEitherUnitmore polymorphic; it can simply ignore the argument to Left. We cannot
do this in toEitherUnit: we would not have a value of type b at hand to pass to Left.

Solution 19

Pondering the question...

42

The line return 23 doesn’t do anything: There is no side-effect, and the result (the value 23) is not bound
to any variable and hence ignored.

Solution 20

Hooray!

Hooray!

Hooray!

Almost done

Hooray!

Done

Done

2

Note that the putStrLn "And up she rises." is never executed.

Solution 21

instance Eq Employee where

e1 == e2 =

name e1 == name e2 &&

room e1 == room e2 &&

pubkey e1 == pubkey e2

The problem is: If the record gains additional fields, this code still compiles, and the programmer is not
warned that they should update it. By not using the record accessors, and using normal constructor
syntax instead, this can be avoided:

instance Eq Employee where

Employee n1 r1 p1 == Employee n2 r2 p2 =

n1 == n2 && r1 == r2 && p1 == p2

Solution 22

The Semigroup type class is defined as

class Semigroup a where

(<>) :: a -> a -> a

with the additional requirement that the (<>) operation is associative.

Solution 23

There are (at least) two sensible instances for the Semigroup type class for trees:

1. The first one concatenates two trees, so that an in-order traversal first visits the value of the left and
then of the right tree:

instance Semigroup (Tree a) where

Leaf <> t = t

Node x l r <> t = Node x l (r <> t)

There are variations of this code that are more likely to produce a balanced tree – although then it
might be that associativity holds when one considers different shapes of the same data equivalent
(which is commonly the case for search trees).

2. Another one traverses both trees in parallel, using a Semigroup instance for the elements to combine
values that are present in both trees:

instance Semigroup a => Semigroup (Tree a) where

Leaf <> t = t

t <> Leaf = t

Node x l1 r1 <> Node y l2 r2 = Node (x <> y) (l1 <> l2) (r1 <> r2)

Here, the instance head itself has a constraint: This instance for Tree a only exists if there is a
Semigroup instance for the type of values.

Which instance is the right one? That depends on the purpose of the Tree data structure in the code; and
maybe neither is the right one, in which case it might be better to have no instance at all, and use normal
functions for these operations.

3

Solution 24

One might expect this code:

summarize :: Monoid a => Tree a -> a

summarize Leaf = mempty

summarize (Node x l r) = summarize l <> x <> summarize r

(at least given everything we did so far considered in-order traversals.)

If we have two trees with the same elements in the same order, but in a different shape, e.g.

t1 = Tree x Leaf (Tree y Leaf (Tree z Leaf))

t2 = Tree y (Tree x Leaf Leaf) (Tree z Leaf Leaf)

for some values x, y and z, then we will always have summarize t1 = summarize t2, assuming that the
Monoid instance for the type of values is lawful. This is important if we use these trees as search trees,
where the internal shape should be an implementation detail that should not be visible from the outside.

Solution 27

forM :: Monad m => [a] -> (a -> m b) -> m [b]

forM [] f = return []

forM (x:xs) f = do

y <- f x

ys <- forM xs f

return (y : ys)

Solution 25

import Prelude hiding (fmap, (<$>))

(>>) :: Monad m => m a -> m b -> m b

a >> b = a >>= (_ -> b)

fmap :: Monad f => (a -> b) -> f a -> f b

fmap f a = a >>= (return . f)

(<$>) :: Monad f => (a -> b) -> f a -> f b

(<$>) = fmap

(<$) :: Monad f => a -> f b -> f a

x <$ a = const x <$> a

liftA2 :: Monad f => (a -> b -> c) -> f a -> f b -> f c

liftA2 f a b = a >>= (\x -> b >>= (\y -> return (f x y)))

(<*>) :: Monad f => f (a -> b) -> f a -> f b

(<*>) = liftA2 (\f x -> f x)

(<*) :: Monad f => f a -> f b -> f a

(<*) = liftA2 (\x y -> x)

(*>) :: Monad f => f a -> f b -> f b

(*>) = liftA2 (\x y -> y)

(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> (a -> m c)

a >=> b = (\x -> a x >>= b)

join :: Monad m => m (m a) -> m a

join a = a >>= id

Solution 26

4

Since when False action is not supposed to execute action, it has no way of producing an m a. But it
can always create an m () using return ().

Solution 28

The instance is

instance Monoid r => Applicative ((,) r)

and the Monoid constraint on r gives us exactly the operations needed to implement pure and (<*>). Try
it yourself!

5

